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ABSTRACT: Book Abacus is a data science project that crawls the web to discover readily available books, those that can 
be purchased. These books are presented to users via recommendation pages that are generated using human-interests 
gathered from the Linked Open Data cloud. For its data repository, it uses Hypertable, a BigTable column-oriented store. 

Discovering books on the web may provide the best es-
timates on how many actually exist. In 2010 Google used 
their index of the web to discover almost 130 million 
books (Taycher, 2010).  

Book Abacus discovers in the same manner, by crawling 
the web. We are primarily interested in gathering data 
about books that that are available to purchase, this is the 
body of literature that is readily accessible to billions of 
people. We believe this data set, of the books that are 
available for purchase on the web has usages aside from 
price comparison and market intelligence. An example is 
data science exercises exploring the vastness of the book 
space and the body of readily accessible literature. 

The Book Abacus website provides availability and pric-
ing information for over 13.5 million books, aggregated 
from 50 million offers discovered on the web from both 
physical and digital booksellers around the world. This 
data indicates which books are accessible to particular 
regions of the world at a given time. Books are indexed 
using 4 million detailed human interests (topic recom-
mendation pages). The home page displays a selection of 
books for topics that appear in UK and US news stories, 
updating every half an hour. Around 1 million price up-
dates occur daily, fed by our crawling activities (these 
statistics are as of January 2015). 

 

 
Figure 1. Recommendation page for a topic, in this in-
stance for “Apollo 11” 

To construct the topic recommendation pages (fig. 1), 
Book Abacus must (1) discover a large number of books 
that are available to purchase and (2) discover a large 
number of human interests. 

To gather book information, we use an Apache Nutch-
based crawler (bot). The behavior of our bot is directed 
using domain definitions. Based upon Apache Hadoop, 
the crawl cycle runs as a set of MapReduce jobs in the 
cloud. Where a set of data items have been discovered 
that meet our perception of what a book is and business 
criteria is met, such as purchasing availability, the data 
items are recorded with provenance information. Using 
Apache Nutch in this manner provides us with a highly 
scalable data mining capability. The data collected by bot 
nodes is shipped to Hypertable where it is aggregated and 
enriched using domain models to present “book” instanc-
es that are consumed by downstream systems. 

 

 
Figure 2. Extract of the Linked Open Data Cloud 
(Schmachtenberg, Bizer, & Jentzsch, 2014)  

 

To gather human interests, Book Abacus consumes da-
ta from the LOD cloud (fig. 2). Linked data is published as 
RDF. Datasets are typically downloadable en-masse (data 
snapshots). The LOD cloud contains data sets from gov-
ernment, non-profit and commercial organizations. The 
LOD cloud is a rich source of human interests. The center 
point of the LOD cloud is DBpedia, a structured extrac-
tion of Wikipedia, downloadable as a RDF data set. 

http://www.bookabacus.com/
http://www.bookabacus.com/
http://www.bookabacus.com/
http://www.bookabacus.com/topic/apollo-11
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DBpedia contains structured descriptions of conceptual 
“things” that are generated from Wikipedia articles. As 
articles are generally entity-centric (one article is about 
one conceptual “thing”), DBpedia presents a rich, multi-
language source of human interests that are used to seed 
our topic recommendations. Due to its source DBpedia is 
indirectly human curated. Beyond the descriptions, the 
link graph within DBpedia captures a crowd sourced hu-
man perspective on topic relationships. We analyze this 
link graph to produce “related” book recommendations. 
This semantic analysis enables recommendations in the 
long tail, where purchasing data may not enable heuristic 
recommendation models (e.g. “people who viewed this 
also viewed”, “people who bought this also bought”). 

Consumers of data sets from the LOD cloud typically 
use native RDF databases (triplestores) and SPARQL (a 
query language for RDF) to persist and interact with the 
underlying data. Book Abacus uses the BigTable store 
Hypertable, its query language HQL and MapReduce. It is 
the central data repository of Book Abacus. Outside of 
Hypertable we use a variety of natural language pro-
cessing (NLP) and search technologies to enrich book 
data and produce our topic recommendation pages. 

BOOK ABACUS AND HYPERTABLE 

In order to determine the essential features Book Aba-
cus required from a column-oriented store, we undertook 
a 6-month period of analysis, studying the data our bot 
was collecting and the data gathered from the LOD cloud. 
In order to maximize data value it became apparent that 
the ability to query using orthogonal properties was vital 
to exploiting relationships. This made secondary indexes 
an essential feature. Using secondary indexes, data can be 
arranged appropriately at load-time to enable fast query-
time performance when selecting from properties other 
than row (primary) key. The advantage of being able to 
specify secondary indexes on columns is that additional 
cost is only incurred for the relationships our use-cases 
exploit. This is important in the context of persisting and 
querying a large amount of RDF where every fact presents 
a relationship. 

Secondary indexes enable fine-grained control over the 
RDF properties that are indexed and those that are just 
stored, in similar fashion to how a field in an Apache 
Lucene document can be set as stored, indexed or both. 
Triplestores generally index each property in the same 
manner, which results in low-value properties bearing the 
same cost as high-value properties. While treating prop-
erties equivalently facilitates discovery, significant cost 
can be unnecessarily incurred due to under utilization. 
We prefer a less-is-more approach, where the cost of eve-
ry data item is attributable. For example, if we discover a 
property joining a person with a birthplace and determine 
that there is a use-case for that relationship, we can set a 
secondary index on that joining property and build a que-
ry to exploit it. This gives us significant control over the 

data we are managing and the subsequent cost of its utili-
zation in delivering use-cases. 

Hypertable is a high performance column-oriented 
store. This case study discusses how we use (1) secondary 
indexes for querying via orthogonal properties and data 
integration and (2) atomic counters for counting relation-
ships within RDF data sets and subsequent topic ranking. 

Storing a RDF triple in a column-oriented store is 
straightforward. There is a one-to-one mapping between 
a triple and a column. Triples are made of three parts, the 
subject, predicate and object. Columns are composed of a 
row key, the column, column qualifier, cell value and last 
modified time. With basic mapping, a single column can 
accommodate a RDF triple. The subject of the triple be-
comes the row key. The cell value is the object. Depend-
ing upon the value of the relationship, we determine how 
it is to be exploited and select an appropriate column 
from the table schema to match our usage, e.g. using a 
store-only or value secondary-index column. The predi-
cate itself is stored as the column qualifier. Multiple col-
umn types can exist in the schema. These are reused, for 
example: columns that only store data (used for low-value 
properties) and those with secondary-indexes (used for 
high-value properties). The last modified time is set to 
present time, but can be overridden. Last modified times 
are used for data provenance, e.g. recording when the 
data item was seen by our bot. This allows us to calculate 
“last seen” times per individual data item. 

 

 

Figure 3. Focused book details, for “Failure Is Not An Op-
tion” by Gene Kranz, purchasing information on the right 

 

Hypertable provides native secondary indexes (intro-
duced in 0.9.5.6, improved significantly in 0.9.8.0) on 
both column qualifiers and cell values. Querying data 
using orthogonal properties is a difficult problem for col-
umn-oriented stores. Numerous implementations exist to 
provide secondary indexes within HBase, but each has 
limitations and drawbacks. Hypertable provides a clean 
native implementation that can be used out-of-the-box. 

http://www.bookabacus.com/9781439148815
http://www.bookabacus.com/9781439148815
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We utilize secondary indexes to quickly integrate book 
data at load-time from a large number of continuously 
changing sources. As the data has been arranged appro-
priately at load-time, we are able to retrieve an integrated 
model of a book for book detail pages (fig. 3) with mini-
mum computational cost at query-time. The book detail 
pages offer purchasing information and compound book 
details to provide multi-source attribution. 

Using standard book industry identifiers and querying 
orthogonal properties, we are able to inexpensively inte-
grate book data using Hypertable. We retrieve the inte-
grated model from Hypertable and instantiate a weighted 
provenance model of a book instance. The model is con-
structed using similarity and duplicate content analysis, 
where every individual data item per source is a vote for 
its correctness. This allows us to discover the most used 
data properties that describe a book, and the rare, unique 
and false cases. Additionally, we are able to influence the 
weighting factors for individual sources in order to make 
sources more or less authoritative. 

Every data item in the weighted provenance model is 
annotated with data that includes the source URL of 
where it was found and the time seen. We can therefore 
attribute each individual data item up to the view layers 
of our consuming applications. Business rules can also be 
implemented to enable dynamic weighting. An example 
of dynamic weighting is influencing data from booksellers 
in the same country of publication as a given title (prefer-
ring Swedish book data sources for a Swedish book).  

 

 
Figure 4. Focused book details, showing book data com-
pounding and enrichment (topic highlights) 

 

The book detail pages display data items ranked by per-
ceived correctness (fig. 4). Below each data item, attribu-
tion is placed providing a link to where the data was seen 
and how long ago from present time. Descriptions are 
enriched using NLP and entity extraction (note highlights 
in fig. 4). The corpus for the entity extractors are the hu-
man interests gathered from the LOD cloud. In the exam-
ple shown in fig. 4, the associated topics are: Failure Is 

Not An Option, NASA, Gene Kranz and United States. 
When a user clicks on an inline highlight, they are taken 
to the corresponding topic recommendation page. This 
enables a user to traverse the human-interest link graph 
through book descriptions. The recommendations are 
scored using a relevance algorithm for which a key factor 
is incoming and outgoing link count. Hypertable facili-
tates this by providing an atomic counter column type. 

Atomic counters are incremented, decremented or re-
set by inserting a value with a positive, negative or zero 
integer. As data is loaded into Hypertable, values are writ-
ten to counter columns. Maintaining counts at load-time 
avoids expensive IO-bound scans that have to comb 
through large amounts of data. The logic to increment or 
decrement counters exists within the loader. For highly 
interlinked RDF data sets, we find it valuable to count the 
number of incoming and outgoing links to and from each 
resource. These counts and others are factored in produc-
ing related topic recommendations. 

 

 

Figure 5. Focused thumbnail grid showing related topics 
for George H. W. Bush 

 

Thumbnail grids (fig. 5) appear on topic recommenda-
tion and book detail pages to present related topics 
ranked using a score that factors counts held within 
Hypertable. Using JavaScript and AJAX calls, the web 
browser asynchronously fetches related thumbnails. The 
response from the server includes a HTTP header con-
taining the related score of that topic. The thumbnail and 
associated link is then inserted into the grid, with the 
position selected by a score comparator that reads scores 
from the response headers.  Related topic scores also in-
fluence the contents of the homepage, which is regener-
ated every half an hour. It contains topics that are 
deemed to be popular at that time (popular topics) and a 
selection of recommended books for each. 

To identify popular topics we gather news stories from 
UK and US sources. Each news story is processed using 
the same NLP and entity extraction components that are 
used to enrich book descriptions with inline highlighting 
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(discussed earlier). The resulting associated topics from 
current news stories are deemed popular topics. An algo-
rithm is used to select books for those topics that factors 
various counts. These include the number of present of-
fers and even property specific criteria, e.g. a count of 
known cover thumbnails URL’s. These counts are main-
tained in Hypertable counter columns and influence the 
selection of books that appear on the home page. Every 
story is given an aggregated topic score, for example a 
story about a US election may have the associated topics: 
‘Barack Obama’ and ‘United States’. 

Stories and books about such topics are likely to appear 
towards the top of the home page, as the aggregated topic 
score is likely to be significant. Such scoring provides in-
teresting metrics. For example, uncovering opportunities 
for authors by finding topics for which few books are 
presently available or were ever written. Such data science 
exercises may provide interesting guidance to authors and 
publishers looking to discover present gaps and oppor-
tunity areas. We plan to undertake such data science ex-
ercises in the coming future. 

 

 
Figure 6. Home page, showing news stories and associat-
ed topic thumbnails that link to recommendation pages 

 

The home page is designed to be highly reactive to 
world events. It will display up to 40 news stories, associ-
ated topic thumbnails and 6 recommended books for 
each. The number of news stories and books displayed to 
an end-user depends upon device screen size. The home 
page is responsive; users accessing the site from mobile 
devices will be presented fewer recommended books per 
news story in order to display clear relationships and 
maintain user-experience. The books recommended for 
each topic is based on numerous factors that include rele-
vance, purchasing availability and even the number of 

known thumbnail covers. Filters exclude books that may 
be inappropriate for all-ages; books that seem too similar 
when summarized and duplicate suggestions. Some book 
suggestions that appeared on the home page in January 
2015 include those for topics: Ebola Virus, Prince Andrew, 
North Korea/ Sony, Elon Musk/ SpaceX, Li Ka-shing, Bill 
Clinton, Tom Brady and King Abdullah of Saudi Arabia.  

FUTURE WORK 

We continue to identify high-value data science exer-
cises that can be undertaken in the short-to-medium 
term by actively studying the data gathered by our bot. In 
the immediate future we plan to increase our crawling 
capacity, improve the methods by which we generate rec-
ommendations and deliver subject recommendation pag-
es (to complement the topic based). For example, topic 
recommendation pages for the boxers “Mike Tyson” and 
“Floyd Mayweather” exist, but using DBpedia, YAGO and 
OpenCyc we can create high-level subject pages that offer 
books about “American Boxers who won world titles”. 
These pages will also interestingly interlink topic pages. 

We will scale our data handling capacity in order to fa-
cilitate increasing data exercises. This will involve scaling 
our Hypertable cluster. Apache Jena, an RDF and seman-
tic web Java library used by Book Abacus to stream RDF 
to and from Hypertable is to incorporate support for the 
utilization of Hadoop for RDF processing in an upcoming 
release (patch submitted by Cray Inc.). We plan to use 
that functionality within Apache Jena to improve our pre-
processing of data sets gathered from the LOD cloud, 
running jobs before data is imported into Hypertable. 
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